publications

genetic_studies

Genetic studies of body mass index yield new insights for obesity biology

Obesity is heritable and predisposes to many diseases. To understand the genetic basis of obesity better, here we conduct a genome-wide association study and Metabochip meta-analysis of body mass index (BMI), a measure commonly used to define obesity and assess adiposity, in up to 339,224 individuals. This analysis identifies 97 BMI-associated loci (P < 5 × 10−8), 56 of which are novel. Five loci demonstrate clear evidence of several independent association signals, and many loci have significant effects on other metabolic phenotypes. The 97 loci account for ~2.7% of BMI variation, and genome-wide estimates suggest that common variation accounts for >20% of BMI variation. Pathway analyses provide strong support for a role of the central nervous system in obesity susceptibility and implicate new genes and pathways, including those related to synaptic function, glutamate signalling, insulin secretion/action, energy metabolism, lipid biology and adipogenesis.

PMID: 25673413 Download PDF

new_genetic_loci

New genetic loci link adipose and insulin biology to body fat distribution

Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10−8). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms.

PMID: 25673412 Download PDF

biological

Biological interpretation of genome-wide association studies using predicted gene functions

The main challenge for gaining biological insights from genetic associations is identifying which genes and pathways explain the associations. Here we present DEPICT, an integrative tool that employs predicted gene functions to systematically prioritize the most likely causal genes at associated loci, highlight enriched pathways and identify tissues/cell types where genes from associated loci are highly expressed. DEPICT is not limited to genes with established functions and prioritizes relevant gene sets for many phenotypes.

PMID: 25597830 Download PDF

genetic_evidence

Genetic evidence for a normal-weight “metabolically obese” phenotype linking insulin resistance, hypertension, coronary artery disease, and type 2 diabetes

The mechanisms that predispose to hypertension, coronary artery disease (CAD), and type 2 diabetes (T2D) in individuals of normal weight are poorly understood. In contrast, in monogenic primary lipodystrophy-a reduction in subcutaneous adipose tissue-it is clear that it is adipose dysfunction that causes severe insulin resistance (IR), hypertension, CAD, and T2D. We aimed to test the hypothesis that common alleles associated with IR also influence the wider clinical and biochemical profile of monogenic IR. We selected 19 common genetic variants associated with fasting insulin-based measures of IR. We used hierarchical clustering and results from genome-wide association studies of eight nondisease outcomes of monogenic IR to group these variants. We analyzed genetic risk scores against disease outcomes, including 12,171 T2D cases, 40,365 CAD cases, and 69,828 individuals with blood pressure measurements. Hierarchical clustering identified 11 variants associated with a metabolic profile consistent with a common, subtle form of lipodystrophy. A genetic risk score consisting of these 11 IR risk alleles was associated with higher triglycerides (β = 0.018; P = 4 × 10(-29)), lower HDL cholesterol (β = -0.020; P = 7 × 10(-37)), greater hepatic steatosis (β = 0.021; P = 3 × 10(-4)), higher alanine transaminase (β = 0.002; P = 3 × 10(-5)), lower sex-hormone-binding globulin (β = -0.010; P = 9 × 10(-13)), and lower adiponectin (β = -0.015; P = 2 × 10(-26)). The same risk alleles were associated with lower BMI (per-allele β = -0.008; P = 7 × 10(-8)) and increased visceral-to-subcutaneous adipose tissue ratio (β = -0.015; P = 6 × 10(-7)). Individuals carrying ≥17 fasting insulin-raising alleles (5.5% population) were slimmer (0.30 kg/m(2)) but at increased risk of T2D (odds ratio [OR] 1.46; per-allele P = 5 × 10(-13)), CAD (OR 1.12; per-allele P = 1 × 10(-5)), and increased blood pressure (systolic and diastolic blood pressure of 1.21 mmHg [per-allele P = 2 × 10(-5)] and 0.67 mmHg [per-allele P = 2 × 10(-4)], respectively) compared with individuals carrying ≤9 risk alleles (5.5% population). Our results provide genetic evidence for a link between the three diseases of the “metabolic syndrome” and point to reduced subcutaneous adiposity as a central mechanism.

PMID: 25048195 Download PDF

loss_of_function

Loss-of-function mutations in APOC3, triglycerides, and coronary disease

BACKGROUND: Plasma triglyceride levels are heritable and are correlated with the risk of coronary heart disease. Sequencing of the protein-coding regions of the human genome (the exome) has the potential to identify rare mutations that have a large effect on phenotype.
METHODS: We sequenced the protein-coding regions of 18,666 genes in each of 3734 participants of European or African ancestry in the Exome Sequencing Project. We conducted tests to determine whether rare mutations in coding sequence, individually or in aggregate within a gene, were associated with plasma triglyceride levels. For mutations associated with triglyceride levels, we subsequently evaluated their association with the risk of coronary heart disease in 110,970 persons.
RESULTS: An aggregate of rare mutations in the gene encoding apolipoprotein C3 (APOC3) was associated with lower plasma triglyceride levels. Among the four mutations that drove this result, three were loss-of-function mutations: a nonsense mutation (R19X) and two splice-site mutations (IVS2+1G→A and IVS3+1G→T). The fourth was a missense mutation (A43T). Approximately 1 in 150 persons in the study was a heterozygous carrier of at least one of these four mutations. Triglyceride levels in the carriers were 39% lower than levels in noncarriers (P<1×10(-20)), and circulating levels of APOC3 in carriers were 46% lower than levels in noncarriers (P=8×10(-10)). The risk of coronary heart disease among 498 carriers of any rare APOC3 mutation was 40% lower than the risk among 110,472 noncarriers (odds ratio, 0.60; 95% confidence interval, 0.47 to 0.75; P=4×10(-6)).
CONCLUSIONS: Rare mutations that disrupt APOC3 function were associated with lower levels of plasma triglycerides and APOC3. Carriers of these mutations were found to have a reduced risk of coronary heart disease.

PMID: 24941081 Download PDF

linkage_analysis_p1.gif<br /><br /><br /><br /><br /><br />

Genome-wide family-based linkage analysis of exome chip variants and cardiometabolic risk

Linkage analysis of complex traits has had limited success in identifying trait-influencing loci. Recently, coding variants have been implicated as the basis for some biomedical associations. We tested whether coding variants are the basis for linkage peaks of complex traits in 42 African-American (n = 596) and 90 Hispanic (n = 1,414) families in the Insulin Resistance Atherosclerosis Family Study (IRASFS) using Illumina HumanExome Beadchips. A total of 92,157 variants in African Americans (34%) and 81,559 (31%) in Hispanics were polymorphic and tested using two-point linkage and association analyses with 37 cardiometabolic phenotypes. In African Americans 77 LOD scores greater than 3 were observed. The highest LOD score was 4.91 with the APOE SNP rs7412 (MAF = 0.13) with plasma apolipoprotein B (ApoB). This SNP was associated with ApoB (P-value = 4 × 10−19) and accounted for 16.2% of the variance in African Americans. In Hispanic families, 104 LOD scores were greater than 3. The strongest evidence of linkage (LOD = 4.29) was with rs5882 (MAF = 0.46) in CETP with HDL. CETP variants were strongly associated with HDL (0.00049 < P-value

PMID: 24719370 Download PDF

 Genome_wide_p1

Genome-wide association of body fat distribution in African ancestry populations suggests new loci

Central obesity, measured by waist circumference (WC) or waist-hip ratio (WHR), is a marker of body fat distribution. Although obesity disproportionately affects minority populations, few studies have conducted genome-wide association study (GWAS) of fat distribution among those of predominantly African ancestry (AA). We performed GWAS of WC and WHR, adjusted and unadjusted for BMI, in up to 33,591 and 27,350 AA individuals, respectively. We identified loci associated with fat distribution in AA individuals using meta-analyses of GWA results for WC and WHR (stage 1). Overall, 25 SNPs with single genomic control (GC)-corrected p-values<5.0×10(-6) were followed-up (stage 2) in AA with WC and with WHR. Additionally, we interrogated genomic regions of previously identified European ancestry (EA) WHR loci among AA. In joint analysis of association results including both Stage 1 and 2 cohorts, 2 SNPs demonstrated association, rs2075064 at LHX2, p = 2.24×10(-8) for WC-adjusted-for-BMI, and rs6931262 at RREB1, p = 2.48×10(-8) for WHR-adjusted-for-BMI. However, neither signal was genome-wide significant after double GC-correction (LHX2: p = 6.5×10(-8); RREB1: p = 5.7×10(-8)). Six of fourteen previously reported loci for waist in EA populations were significant (p<0.05 divided by the number of independent SNPs within the region) in AA studied here (TBX15-WARS2, GRB14, ADAMTS9, LY86, RSPO3, ITPR2-SSPN). Further, we observed associations with metabolic traits: rs13389219 at GRB14 associated with HDL-cholesterol, triglycerides, and fasting insulin, and rs13060013 at ADAMTS9 with HDL-cholesterol and fasting insulin. Finally, we observed nominal evidence for sexual dimorphism, with stronger results in AA women at the GRB14 locus (p for interaction = 0.02). In conclusion, we identified two suggestive loci associated with fat distribution in AA populations in addition to confirming 6 loci previously identified in populations of EA. These findings reinforce the concept that there are fat distribution loci that are independent of generalized adiposity.

PMID: 23966867 Download PDF

Sex_stratified_p1

Sex-stratified genome-wide association studies including 270,000 individuals show sexual dimorphism in genetic loci for anthropometric traits.

Given the anthropometric differences between men and women and previous evidence of sex-difference in genetic effects, we conducted a genome-wide search for sexually dimorphic associations with height, weight, body mass index, waist circumference, hip circumference, and waist-to-hip-ratio (133,723 individuals) and took forward 348 SNPs into follow-up (additional 137,052 individuals) in a total of 94 studies. Seven loci displayed significant sex-difference (FDR<5%), including four previously established (near GRB14/COBLL1, LYPLAL1/SLC30A10, VEGFA, ADAMTS9) and three novel anthropometric trait loci (near MAP3K1, HSD17B4, PPARG), all of which were genome-wide significant in women (P<5×10−8), but not in men. Sex-differences were apparent only for waist phenotypes, not for height, weight, BMI, or hip circumference. Moreover, we found no evidence for genetic effects with opposite directions in men versus women. The PPARG locus is of specific interest due to its role in diabetes genetics and therapy. Our results demonstrate the value of sex-specific GWAS to unravel the sexually dimorphic genetic underpinning of complex traits.

PMID: 21423719 Download PDF

metaanalysis_p1.gif A meta-analysis identifies new loci associated with body mass index in individuals of African ancestry.

Obesity is globally prevalent and highly heritable, but its underlying genetic factors remain largely elusive. To identify genetic loci for obesity susceptibility, we examined associations between body mass index and ~2.8 million SNPs in up to 123,865 individuals with targeted follow up of 42 SNPs in up to 125,931 additional individuals. We confirmed 14 known obesity susceptibility loci and identified 18 new loci associated with body mass index (P < 5 × 10−8), one of which includes a copy number variant near GPRC5B. Some loci (at MC4R, POMC, SH2B1 and BDNF) map near key hypothalamic regulators of energy balance, and one of these loci is near GIPR, an incretin receptor. Furthermore, genes in other newly associated loci may provide new insights into human body weight regulation.

PMID: 23583978 Download PDF

characterization_p1

Characterization of European ancestry nonalcoholic fatty liver disease-associated variants in individuals of African and Hispanic descent.

Nonalcoholic fatty liver disease (NAFLD) is an obesity-related condition affecting over 50% of individuals in some populations and is expected to become the number one cause of liver disease worldwide by 2020. Common, robustly associated genetic variants in/near five genes were identified for hepatic steatosis, a quantifiable component of NAFLD, in European ancestry individuals. Here we tested whether these variants were associated with hepatic steatosis in African- and/or Hispanic-Americans and fine-mapped the observed association signals. We measured hepatic steatosis using computed tomography in five African American (n = 3,124) and one Hispanic American (n = 849) cohorts. All analyses controlled for variation in age, age(2) , gender, alcoholic drinks, and population substructure. Heritability of hepatic steatosis was estimated in three cohorts. Variants in/near PNPLA3, NCAN, LYPLAL1, GCKR, and PPP1R3B were tested for association with hepatic steatosis using a regression framework in each cohort and meta-analyzed. Fine-mapping across African American cohorts was conducted using meta-analysis. African- and Hispanic-American cohorts were 33.9/37.5% male, with average age of 58.6/42.6 years and body mass index of 31.8/28.9 kg/m(2) , respectively. Hepatic steatosis was 0.20-0.34 heritable in African- and Hispanic-American families (P < 0.02 in each cohort). Variants in or near PNPLA3, NCAN, GCKR, PPP1R3B in African Americans and PNPLA3 and PPP1R3B in Hispanic Americans were significantly associated with hepatic steatosis; however, allele frequency and effect size varied across ancestries. Fine-mapping in African Americans highlighted missense variants at PNPLA3 and GCKR and redefined the association region at LYPLAL1. Conclusion: Multiple genetic variants are associated with hepatic steatosis across ancestries. This explains a substantial proportion of the genetic predisposition in African- and Hispanic-Americans. Missense variants in PNPLA3 and GCKR are likely functional across multiple ancestries.

PMID: 23564467 Download PDF

ng_genome_wide_p1

Genome-wide meta-analysis identifies 11 new loci for anthropometric traits and provides insights into genetic architecture.

Approaches exploiting trait distribution extremes may be used to identify loci associated with common traits, but it is unknown whether these loci are generalizable to the broader population. In a genome-wide search for loci associated with the upper versus the lower 5th percentiles of body mass index, height and waist-to-hip ratio, as well as clinical classes of obesity, including up to 263,407 individuals of European ancestry, we identified 4 new loci (IGFBP4, H6PD, RSRC1 and PPP2R2A) influencing height detected in the distribution tails and 7 new loci (HNF4G, RPTOR, GNAT2, MRPS33P4, ADCY9, HS6ST3 and ZZZ3) for clinical classes of obesity. Further, we find a large overlap in genetic structure and the distribution of variants between traits based on extremes and the general population and little etiological heterogeneity between obesity subgroups.

PMID: 23563607 Download PDF

Association between variants in or near PNPLA3, GCKR, and PPP1R3B with ultrasound-defined steatosis based on data from the third National Health and Nutrition Examination Survey.

Background and Aims: A genome-wide association study associated 5 genetic variants with hepatic steatosis (identified by computerized tomography) in individuals of European ancestry. We investigated whether these variants were associated with measures of hepatic steatosis (HS) in non-Hispanic white (NHW), non-Hispanic black, and Mexican American (MA) participants in the US population-based National Health and Nutrition Examination Survey III, phase 2.
Methods: We analyzed data from 4804 adults (1825 NHW, 1442 non-Hispanic black, and 1537 MA; 51.7% women; mean age at examination, 42.5 y); the weighted prevalence of HS was 37.3%. We investigated whether ultrasound-measured HS, with and without increased levels of alanine aminotransferase (ALT), or level of ALT alone, was associated with rs738409 (patatin-like phospholipase domain-containing protein 3 [PNPLA3]), rs2228603 (neurocan [NCAN]), rs12137855 (lysophospholipase-like 1), rs780094 (glucokinase regulatory protein [GCKR]), and rs4240624 (protein phosphatase 1, regulatory subunit 3b [PPP1R3B]) using regression modeling in an additive genetic model, controlling for age, age-squared, sex, and alcohol consumption.
Results: The G allele of rs738409 (PNPLA3) and the T allele of rs780094 (GCKR) were associated with HS with a high level of ALT (odds ratio [OR], 1.36; P = .01; and OR, 1.30; P = .03, respectively). The A allele of rs4240624 (PPP1R3B) and the T allele of rs2228603 (NCAN) were associated with HS (OR, 1.28; P = .03; and OR, 1.40; P = .04, respectively). Variants of PNPLA3 and NCAN were associated with ALT level among all 3 ancestries. Some single-nucleotide polymorphisms were associated with particular races or ethnicities: variants in PNPLA3, NCAN, GCKR, and PPP1R3B were associated with NHW and variants in PNPLA3 were associated with MA. No variants were associated with NHB.
Conclusions: We used data from the National Health and Nutrition Examination Survey III to validate the association between rs738409 (PNPLA3), rs780094 (GCKR), and rs4240624 (PPP1R3B) with HS, with or without increased levels of ALT, among 3 different ancestries. Some, but not all, associations between variants in NCAN, lysophospholipase-like 1, GCKR, and PPP1R3B with HS (with and without increased ALT level) were significant within subpopulations.

PMID: 23416328 Download PDF

Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have effects on metabolic traits.

Nonalcoholic fatty liver disease (NAFLD) clusters in families, but the only known common genetic variants influencing risk are near PNPLA3. We sought to identify additional genetic variants influencing NAFLD using genome-wide association (GWA) analysis of computed tomography (CT) measured hepatic steatosis, a non-invasive measure of NAFLD, in large population based samples. Using variance components methods, we show that CT hepatic steatosis is heritable (∼26%-27%) in family-based Amish, Family Heart, and Framingham Heart Studies (n = 880 to 3,070). By carrying out a fixed-effects meta-analysis of genome-wide association (GWA) results between CT hepatic steatosis and ∼2.4 million imputed or genotyped SNPs in 7,176 individuals from the Old Order Amish, Age, Gene/Environment Susceptibility-Reykjavik study (AGES), Family Heart, and Framingham Heart Studies, we identify variants associated at genome-wide significant levels (p<5×10(-8)) in or near PNPLA3, NCAN, and PPP1R3B. We genotype these and 42 other top CT hepatic steatosis-associated SNPs in 592 subjects with biopsy-proven NAFLD from the NASH Clinical Research Network (NASH CRN). In comparisons with 1,405 healthy controls from the Myocardial Genetics Consortium (MIGen), we observe significant associations with histologic NAFLD at variants in or near NCAN, GCKR, LYPLAL1, and PNPLA3, but not PPP1R3B. Variants at these five loci exhibit distinct patterns of association with serum lipids, as well as glycemic and anthropometric traits. We identify common genetic variants influencing CT-assessed steatosis and risk of NAFLD. Hepatic steatosis associated variants are not uniformly associated with NASH/fibrosis or result in abnormalities in serum lipids or glycemic and anthropometric traits, suggesting genetic heterogeneity in the pathways influencing these traits.

PMID: 21423719 Download PDF

Link to all Dr. Speliotes’ publications in PubMed.